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Hence, adjusted date of initial epoch of minimum is,
1822.25 years, a date 1.1 years before the observed date.
Final equation, y=1822.25+11.31z.

TABLE 3.—Final results

Differ-
Epochs | Epochs
of minima ndggsted esneerevgg-
observed ale. | ZGnte. |
i
1823.3 1822 2 +1.1
33.9 3.6 +0.3
43.5 44.9 —1.4
56.0 56.2 —-0.2
67.2 67.5 —0.3
78.9 78.8 +0.1
89.6 90, 1 —0.5
1901. 7 1901.4 4 +0.3 |
13.6 12.8 +0.8
280 | 21| -0z,

Great stress is laid by some writers upon the variability
of the length of the sun-spot cycle, and a great deal of
significance is claimed for the variations. In so far as the
one hundred years of observations comprised in the above
analysis are concerned there is a very striking constancy of
the period as shown by the small residuals in Table 3,
and it is difficult to see any significance to the slight
fluctuations which appear.

In writing down the observations in the two columns I
and II of Table 2, it is necessary that thelast observation
should always stand opposite the first and then the others
will pair off together.

W}l)len the number of observations is odd the middle
observation must, of course, stand alone at the foot of
either I or II. It also occurs that the weights in this case
are always even numbers and end at the foot of the table
with 0; that is, the middle observation has no weight
whatever in fixing the value of b’.

As a final comment we may suggest that it will rarely
be necessary to carry out the calculations for a large
number of observations, individually, but rather these
may be conveniently grouped in two’s, three’s, five's, etc.,
thus reducing the large number to a series of, say, 10 or 20
values. A little judicious planning of the layout of proh-
lems suffices to bring almost any problem of this kind
within the scope of the simple computations in Table 2.

For the sake of completeness we may write here the
basic equations which evaluate ¢ and b’ Tollowing the cal-
culations in Table 2. The computer needs only to follow
the simple rules to which these equations lead without
necessarily understanding them clearly.

X ndy (A)

B . 2Zxe—(n—1)2c
N=[2s2 -} (n—17] B
Now the great simplification comes in (B). Expanding

the numerator leads to the combination of the observa-
tions into pairs, which can be weighted and summed as in
the last column of Table 2. The proper weights aren— 1,
n—38, n—5, etc., in all cases.

Furthermore, the denominator is always a definite
number depending only upon how many observations are
used. This denominator, N, together with the sum of
squares of the natural numbers from 1 to 25 are easily
computed, once for all, and are given in Table 4. The
sums of squares-are really not needed in the present case,
but are given as it is sometimes convenient to have them,
and ta.bFes containing these values are not very numerous.
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TABLE 4.—Values of N and = n? for natural numbers 1 lo 25

[N= [2.",:!——; (n—l):]. =0, 1,2, 3, ete.]

| n N | =ar
|

) U S, 1

i 2 1 5

3 4 14

4 10 . 30

5 20 | 55

8 35 91

7 56 140

8 84 204

9 120 285

10 165 385

11 220 508

12 286 650

13 364 819

14 456 1,015

15 560 1,240

18 680 | 1,496

17 816 1,786

18 969 2,109

19 1,140 2,470

[ 1,330 2,870

) 1, 60 3,311
| 22 | L7 | 3,795 1
23 | 202 | 43 |
24 | 2,300 | 4,000 |
25 2600 | 5,525 .

|

—

$5/.80/
ON KRICHEWSKY'S METHOD OF FITTING
FREQUENCY CURVES

By Epncar W. WooLARD
[Weather Burean, Washington, D. C., Mareh 10, 1921)

-\ Law of Facility may be described as the approximate
expression of the relative frequency with which, in the
long run. different values are assumed by a quantity
which is dependent on a number of variable items or
clements, given certain conditions which seem to be ade-
qluﬂ.tely fulfilled in common experience. For example,
the Law of Facility in the familar case of the ordinary
errors of observation was exhaustively studied many
vears ago and has long been accurately represented by
the so-called Gaussian curve of errors, the equation of
which is well known.

In recent years the great value of bemng able to derive
with'quantitative precision the curve which shall exhibit
the law of facility of a quantity under consideration
has come to be realized to a greater and greater degree
in an immense variety of fields of study. In any case
the problem is to find from a finite number of observations,
which give a more or less irregular frequency polygon
or histogram, the curve  which approximates most
closely to the frequency curve which would result if we
could have an infinite number of observations.

We now have several well-known methods of fitting
curves to observed frequency distributions. The first
difficulty in curve ﬁttinﬁ is that of choosing a suitable
curve from among all the possible algebraic and tran-
scendental curves that suggest themselves; the second
difficulty lies in evaluating the constants of the equation
of the adopted curve. Until a comparatively recent
date, the great majority of applications of the theory of
frequency curves were to errors of precision measure-
ments, which, as mentioned above, usually conform
closely to the Gaussian or Normal Law. As a result, the
Normal Curve became a Procrustean bed to which all

ossible measurements had to be made to fit; not until
ate In the nineteenth century did skew curves gain
general recognition,! Again, it was for a long time taken
or granted that the correct method of evaluating the

1 See Arne Fisher. The Mathematical Theory of Probabilities. Vol. 1, 2 ed., pp. 178~
187. New York, 1922,
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constants or parameters of any curve is the method of
least squares, although in nine cases out of ten this
method turns out to be impracticable.

The two most important systems of frequency curves
now in general use are: (1) The Gram-Charlier curves,
developed by Gram, Thiele, Edgeworth, and Charlier,
which may readily be fitted with the help of the lucid
exposition of Fisher? and the tables of Jorgensen.
(2) The Pearson curves, for which the necessary direc-
tions hayve been excellently set out by Elderton,* and the
tables alga,t,hered together by Pearson.® Three methods
of evaluating parameters are in wuse: (1) Method of
least squares; ?2) Thiele’s method of semi-invariants:
(3) method of moments. .

Other methods of fitting frequency curves have been
_proposed from time to time, but have not come into
extensive use. The most recent method, and one which
appears to have many merits, is that of Krichewsky.’

'he author states that his method has been published
in order that it may undergo the test of practical experi-
ence over a wide range of problems. It is the purpose
of the present reviewer to give enough information con-
cerning the method to enable the nonmathematical
reader and those to whom the original paper may not
be available actually to fit curves by this process.

Those interested only in actually applying the process
may omit the following sketch of the theory and pass
at once to the ractical directions and illustrative exam-
ple, merely referring to the numbered formule when
necessary; the notation is explained again in these
directions. It may be noted that the Gamma Funec-
tions, which appear in the formul®, have been tabulated,
e. g., in Pearson’s Tables, and that no knowledge of
their theory is required in order to use these tables,
beyond the fact that I'(z+1) =aT(x).

Mathematical theory.—The frequency curve

y=f(z), : (1

in which z varies between the limits 7, and [,, will have
as its area up to any given ordinate |

z=f:ydx=F(:c), @)

the total area being .
a= f:'u dz. (3)
By the Fundamental Theorem of the Integral Calculus
gz=y. (4)

The type equation which Krichewsky fits to the ob-
served frequency distribution is '

gi=7cz"‘(a—z)"=¢(z); (5)

This equation expresses the conditions that y=0 when
z=0 and when z=a, and that ¥ is & maximum for some
value of z between 0 and a. After the values of the

1 Arne Fisher, op. cit.
10.131' R. Jorgensen. Undersbgelser over Frequensflader og Korrelation. Copenhagen,
1 W. Palin Elderton. Frequency- Curves and Correlation. London, 1906,
8 Karl Pearson. Tables for Statisticians and Biometricians. Cambridge Press, 1914,
e St‘as,l ;. g.,J. C. Kapteyn. Skew Frequency Curves in Blology and Statistics. Gronin-
gen, .
18, Krichewsky. A Method of Curve Fitting. Ministry of Public Works, Egypt,
PRysical Department Paper No. 8. Cairo, 1922,
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three parameters k¥, m, n have been determined, the
integration of (5) gives (2), which upon being differ-
entiated gives (1) by virtue of (4).

A wide range of particular algebraic and transcendental
curves is covered by (5). If m=n=0.7864, the curve
is normal; if m and n are between 0 and —1, J-shaped
and U-shaped curves result.

The parameters are evaluated by the method of
moments; the moments

a
M= f yzrdz

of the curve (5) are used for this purpose.

p= _‘]’_[1 = __1!:
P=m T

Putting

we find that

. _pla—gq
m+1—a(q_p)9

a—q

 + D =— : (6
mn+2=— )
_ MT(m+n+2)
T a™*T (m 4+ DT (n+1)

_flaM,— M)I'(m+n+3)

T @ T(m+1)T(n+2)
In virtue of (4), the values of the corresponding moments
of the statistics are given by

M=c=y?, M, =cZ1y%2, M,=cZy?z%, (0

¢ being the class interval.

Equation (5) may be solved by separating the variables,
but the integration involved can not in general be per-
formed without the use of series (which do not converge
rapidly) unless m+n is a positive integer equal to or
greater than 2. (See (5B) below.)

Practical directions for fitting.—1. Prepare the fre-
quency table and histogram in the usual manner.
(Solumns (1) and (2) of Table I give the frequency dis-
tribution of rainfall amounts at Washington expressed
in the form of ratios to the mean. The successive
ordinates of the frequency curve given by observation
are those at the migpoints of the classes, at which the
class frequencies are assumed to be concentrated [column
(3)1; in accordance with custom, divide all the frequen-
cies by the total frequency, and all the class intervals by
the class interval, making the total frequency @ and the
class-interval ¢ each equal to unity; in this way we get
the table of abscissae and ordinates given in columns (4)
and (5). Column (6) merely assigns consecutive num-
bers, r, to each observation.

2. Compute the successive areas of the histogram up
to each of the r ordinates [column (7)],

k 1 1 positive,

y N negative.

fmr—1

] z,=‘2;y¢+%'y r=1,2,8.. .. 8

3. Compute the quantities given in columns (8)—(11),
inclusive; and find the sums of columns (7), (8), (9), (11).

4. The equation which is to be fitted is not that of
the frequency eurve itself, but

%—i=kz’" (@—2)", 6)
from which the frequency curve is later derived. The

next step is to compute p, g, k, m, n by formulae (6), the
quantities M,, M,, M, being those indicated in Table I.
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5. Find m+n: (A) If m+n is a positive integer=2,
separate the variables in (5) and integrate; this gives =
as a function of z, and upon performing the differentia-
tion (4) we get y=1 (z), the equation of the frequency
curve. If m+n differs very little from such a positive
integer, we may put n=2—m and

n
m_ m n<m
2 %l r m<n
in (5), and integrate. .

(B) If m+n is not such a positive integer, choose a
suitable number of equally spaced values of z from 0
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the corresponding theoretical ordinates, y, and ¥,
and Az have been computed; compute from (5) y, the
theoretical value of y corresponding to this area, and
determine its position relative to y, by equating 3(y,+y,)
ox (the area of the trapezoid formed by joining the tops
of yp, ¥;) to 2,—z. Take the position thus determined
by éx as origin, and with the aid of the A#’s form a
table of corresponding values of 2, z, and y, as in Table
II (z being in terms of class intervals, ancil y in terms of
the total frequency) from which the curve may be
plotted; slight irregularities may result from the use of(9).
The area of the fitted curve 1s equal to the area of the
statistics, and the centers of gravity of the two distri-
butions coincide. The mode is given by z=ma/(m +n).

¥1¢. 1.—Bistogram and frequency curve of Washington (D. ('.) reinfall data (see Table 1).
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to 1,* and compute the corresponding values of Ar by the
approximate finite-difference formula

Az

A U F gy T (9)
- Zre 2y -
ke{zm(1—-2)"+2m,,,(1 —2,,)"}
as shown in Table II. Next find

d=23z/a—~0.5. (10}
the distance (in class intervals) from the last ordinate
of the observed distribution to the ordinate through the
mean of this distribution, and calculate the area z, of the
observed distribution up to this ordinate. In general z,
will lie between two of the areas, z, and z,,,, for which

¢ In order to carry the fit out to the limits of the observed distribution it is necessary
to choose these values much closer together near 0 and 1 than in the middle.

In case (B) it is not possible to find an equation for the
frequency curve itself; but in all cases the ordinates cor-
responding to any given areas can easily be found from
{(4) and (5). Pearson’s system gives the equation to the
frequency curve in all cases, but in general these equa-
tions cannot be integrated; and areas, which are often
what is really desired, cannot be found without great
labor. The arithmetical work in fitting the curve is
much more laborious in Pearson’s system than by the
present method. The resulting fits by the two methods
appear to be equally good; a number of examples are
given by Krichewsky. The best-fitting Pearson curve
for the data in Table I is that of Type %II given by the

. equation—

. xr 2.835 ;
y=8-34.3 (l +m) exp (—3.626x).
The accompanying Figure 1 shows both curves and the
histogram.
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TaBLE [
|
Class | Freq. ! Mid-| £ ' ¢ l r z g vz 22 yz?
points; : ] %102 X10* *102
m (e BRI GV I ) N )] I ®; (8) (9) 10 (1
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COMMENTS ON THE LAW OF PRESSURE RATIOS

By F. J. W. WuarerLE
|6 Addison Road, Chiswick, Londoun, W 4, January 2, 1024!

In his paper on ‘' The Law of Pressure Ratios and its
Application to the Charting of Isobars in the Lower
Levels of the Troposphere,” Dr. C. Le. Roy Meisinger
has reached conclusions to which he has given some
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prominence but which seem to be based on insufficient
evidence. The object of this letter is to point out that
the argument by which Doctor Meisinger shows that
there is a functional relation between his variables z and
y shows also that there is an upper limit to the constant
which he calls a.

It is convenient to make a small change from Mei-
singer’s notation and write T, for the average value of
the ahsolute temperature between the heights s and 2.

By definition y is the ratio of pressures at the heights
z and s kilometersabovesea level so that ¥ =exp ( —z¢/ I5,),
where ¢ is a constant.

If T’,,is the mean value of 7,, and AT, the departure
from the mean, then,

y=[142cAT/T] exp (—z¢/T"es).

Similarly, z, the ratio of pressures at the heights 1 and
2 kilometers may be expressed as follows:

2=[14cAT?,/ T,  exp (—c!T',).

Now the regression equation by which z and ¥ are
associated may he written

y=ar+b+e

Here a and b are Meisinger’s constants and e is a residual
varying term which is not correlated with z. The
coefficient @ can be found by the method of least squares:
it is given by the equation

a=zexp [(¢/1",) — (ca/ T"3)] (T 1o/ T'ea)? (0es/043) Ton.13

In this equation. ¢.; and o, are the standard deviations
of 7', and T, respectively, whilst 7y, is the correlation
cocfticient for those two variables.

In discussing the possible values of a it will suffice for
our present purpose to confine attention to the case in
which & and z are identical with 0 and 3, respectively.
In this case, T,, and T, are the mean temperatures of
columns both centered 1!4 kilometers above ground.
These two quantities will differ by very little from one
another in ordinary circumstances and we may write as
very good approximations:

T,= Tes
O =

Ops
A=3exp (—2¢/T";) To3.1z

For T",, we may take the annual mean for the United
States? Vil 12=279
It follows ? that exp (—¢/7",) =:8847 and hence that

A=3X 88472 1,51, =2.35 7yg.

Now the correlation coefficient must be near to unity
but it can not exceed unity. Hence 2.34 is the upper
limit for the coefficient & for 3 kilometers.

The values obtained by Doctor Meisinger at two of
his stations are 2.58 and 2.76, respectively. These
figures seem to be too high; they could only be justified
by the supposition that o, exceeded ¢,, considerably.
This might happen if the series of observations included
a large number of “inversions” of temperature but the
available evidence is against this supposition. The
tables for the stations in question, Groegi)eck and Lees-
burg in Gregg's ‘“Aerological Survey of the United
States” do not show any excessive frequency of cold
air at the surface and moreover the observations which
were utilized both by Gregg and by Meisinger were

Tl gregg Aerologicul Surrey of the United States. Mo. WEATHER REV. 3Urp. No. 20,
able 6.
1 Computer's Hundbook, London, 1917. 11.2.4.



